

Caringbah High School

2018

Trial HSC Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen only
- NESA approved calculators may be used
- A reference sheet is provided
- In Questions 11–16, show relevant mathematical reasoning and/or calculations

Total marks – 100

Section I 10 marks

Pages 2-6

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II 90 marks

Pages 7 – 15

- Attempt Questions 11–16
- Allow about 2 hour and 45 minutes for this section

Question 1 - 10 (1 mark each) Answer on page provided.

- 1 Let z = 4-3i. What is the value of \overline{iz} ?
 - A) 3 + 4i

B) 3 - 4i

C) -3 + 4i

- D) -3 4i
- What is the remainder when $x^3 + x^2 + 5x + 6$ is divided by (x + i)?
 - A) 7 4i

B) 7 - 6i

C) 5 - 4i

- D) 5 + 6i
- 3 The roots of the equation $2x^3 3x^2 + 2x + 2 = 0$ are α, β and γ . What is the value of $\alpha + \beta - \frac{1}{\alpha\beta}$?
 - A) -1

B) 1

C) $-\frac{3}{2}$

- D) $\frac{3}{2}$
- What are the coordinates of the foci of the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$?
 - A) $\left(\pm \frac{2\sqrt{5}}{3}, 0\right)$

B) $\left(0, \pm \frac{2\sqrt{5}}{3}\right)$

C) $\left(\pm\sqrt{5},0\right)$

D) $\left(0, \pm \sqrt{5}\right)$

5 The graph of y = f(x) is shown below?

Which of the following graphs best represents $y^2 = f(x)$?

A)

B)

C)

D)

6 Consider
$$I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sec^2 x}{\left(1 + \tan x\right)^2} dx$$
.

After using an appropriate substitution, which of the following is equivalent to *I*?

A)
$$\int_0^2 \frac{1}{u^2} du$$

$$B) \qquad \int_0^2 \frac{u^2}{\left(1+u\right)^3} \ du$$

C)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{u} du$$

$$D) \qquad \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{u^3} \ du$$

7 If $e^x + e^y = 1$, which of the following is an expression for $\frac{dy}{dx}$?

A)
$$-e^{x-y}$$

B)
$$-e^{y-x}$$

C)
$$e^{x-y}$$

D)
$$e^{y-x}$$

8 Two equal circles touch externally at *B*. *XB* is a diameter of the circle centred at *A*. *XZ* is the tangent from *X* to the circle centred at *C* and cuts the first circle at *Y*.

Which is the correct expression that relates XZ to XY?

A)
$$3XZ = 4XY$$

B)
$$XZ = 2XY$$

C)
$$2XZ = 3XY$$

D)
$$2XZ = 5XY$$

9 The function y = f(x) is monotonic increasing over the interval $0 \le x \le a$. The region bounded by this function, the x-axis and the line x = a is to be rotated about the line x = a to form a solid of revolution.

Which of the following integrals represents the volume of this solid?

A)
$$\pi \int_0^a \left[a - f(x) \right]^2 dx$$
 B) $\pi \int_0^a \left[a - x \right]^2 dx$

B)
$$\pi \int_0^a \left[a - x \right]^2 dx$$

C)
$$\pi \int_0^{f(a)} \left[a - f^{-1}(y) \right]^2 dy$$
 D) $\pi \int_0^{f(a)} \left[a - y \right]^2 dy$

D)
$$\pi \int_0^{f(a)} \left[a - y \right]^2 dy$$

10 Consider
$$\omega = \frac{1}{2} \left(-1 + i\sqrt{3} \right)$$
.

Which of the following is a correct expression for |z|, where $z = a + b\omega$ and a and b are constants.

A)
$$\sqrt{\left(a-b\right)^2+2ab}$$

B)
$$\sqrt{(a-b)^2+ab}$$

C)
$$\sqrt{(a-b)^2-ab}$$

$$D) \qquad \sqrt{\left(a-b\right)^2 - 2ab}$$

END OF MULTIPLE CHOICE QUESTIONS

Section II

90 marks

Attempt all questions 11-16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW booklet.

Marks

- a) Let z = 1 i and u = 3 + 2i. Find:
 - (i) $\operatorname{Im}(u-z)$.

1

(ii) $z \overline{u}$.

1

b) Let the point P represent the complex number z in the Argand diagram.

1

Describe the features of the new point Q representing the complex number 2iz.

c) Find
$$\int \frac{dx}{x^2 + 6x + 13}$$
.

2

- d) It is given that $Z = 1 \sqrt{3}i$.
 - (i) Express Z in modulus argument form.

2

(ii) Hence, express Z^{10} in x + iy form.

2

e) Find the x-coordinates of the points on the curve $2x^2 + 2xy + 3y^2 = 15$ where the tangents to the curve are vertical.

3

where the tangents to the early are vertical

f) (i) Find the domain and range of $f(x) = \tan^{-1}(e^x)$.

2

(ii) Sketch y = f(x) showing any intercepts and asymptotes.

1

a) The diagram below shows the graph of y = f(x) which is an odd function.

On separate sketches, showing any important features, neatly draw the graphs of

$$y = f(-x)$$

(ii)
$$y = \sqrt{f(x)}$$

(iii)
$$y = \frac{1}{f(x)}$$

$$(iv) y = x + f(x)$$

$$(v) y = f'(x)$$

Question 12 continues on page 9

Question 12 (continued)

Marks

- b) Use the substitution $t = \tan \frac{\theta}{2}$ to evaluate $\int_0^{\frac{\pi}{3}} \frac{d\theta}{1 + \sin \theta}$.
- c) C is a unit circle with its centre at the origin on the Argand diagram. If the point representing z_1 moves on the circle C and $z_2 = \frac{1-i}{z_1}$, find the locus of z_2 and describe it geometrically.

End of Question 12

Question 13 (15 marks) Start a NEW booklet.

Marks

a) Consider the polynomial $P(x) = x^4 - 8x^3 + 18x^2 - 27$.

3

Factorise P(x), given that it has a root of multiplicity 3.

b) Find $\int \frac{1}{x^2} \sqrt{1 + \frac{4}{x}} dx$.

3

c) Express $\frac{1 + \cos \theta - i \sin \theta}{1 + \cos \theta + i \sin \theta}$ in the form a + ib.

3

d) The roots of the cubic equation $x^3 - 4x^2 - 12 = 0$ are α, β and γ .

Find the equation with roots:

(i)
$$-\alpha, -\beta, -\gamma$$
.

2

(ii)
$$\alpha + \beta, \beta + \gamma, \gamma + \alpha$$
.

2

e) Solve $a^x = e^{2x-1}$ for x, expressing the answer in terms of a. (a > 0).

2

Question 14 (15 marks) Start a NEW booklet.

Marks

a) The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ as shown below.

The tangent at P cuts the y-axis at Q. Also, the normal at P cuts the y-axis at R.

The normal at *P* is: $\frac{ax}{\cos \theta} - \frac{by}{\sin \theta} = a^2 - b^2$. [Do not prove this]

(i) Show that the equation of the tangent at *P* is given by $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1.$

(ii) Show that the y-coordinate of Q is
$$\frac{b}{\sin \theta}$$
.

- (iii) Write down the coordinates of the point R.
- (iv) If S is the focus (ae,0), prove that P, Q, R and S are concyclic points.

Question 14 (continued)

Marks

3

b) Consider the function $f(x) = e^{-x} - 1 + x$.

By finding expressions for f'(x) and f''(x) show that

 $e^{-x} \ge 1 - x$, for all x.

c) At a children's playground there is a narrow 6 metre long tunnel with vertical walls. The base (or floor) of the tunnel is in the shape of an ellipse with equal 1 metre amounts cut from each end.

Vertical cross-sections perpendicular to the major axis of the ellipse are in the shape of a rectangle topped by a semi-circle. The base of the rectangle is twice its height and the ellipse has equation $16x^2 + y^2 = 16$.

- (i) With the aid of a diagram show that the area of a typical cross-section 2 is given by $A_s = \left(\frac{4+\pi}{2}\right)x^2$.
- (ii) Hence, find the volume of the tunnel in exact form.

3

Question 15 (15 marks) Start a NEW booklet.

Marks

- a) Find the general solution in radians to the equation $\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} = \frac{3}{4}.$
- b) (i) Let x be a fixed, non-zero number satisfying x > -1.

 Use the method of mathematical induction to prove that for n = 2, 3, 4, ...

$$\left(1+x\right)^n > 1 + nx$$

(ii) Deduce that
$$\left(1 - \frac{1}{2n}\right)^n > \frac{1}{2}$$
 for $n = 2, 3, 4, ...$

- c) If a > 0 and b > 0 show that $a^3 + b^3 \ge a^2b + ab^2$. [Do not use Induction]
- d) $P\left(5p, \frac{5}{p}\right)$, p > 0 and $Q\left(5q, \frac{5}{q}\right)$, q > 0 are two points on the hyperbola xy = 25.

The equation of the chord PQ is given by x + pqy = 5(p + q). [Do not prove this]

- (i) Hence or otherwise, state the equations of the tangents at P and Q.
- (ii) The tangents at P and Q intersect at R. 2

 Show that the coordinates of R are given by $R\left(\frac{10pq}{p+q}, \frac{10}{p+q}\right)$.
- (iii) If the secant PQ passes through the point S(15,0), find the locus of R.

Question 16 (15 marks) Start a NEW booklet.

Marks

- a) The area enclosed between the curves $y = \sqrt{x}$ and $y = x^2$ is rotated about the y axis through one complete revolution. Use the method of cylindrical shells to find the volume of the solid that is generated.
- b) If $I_n = \int_0^1 x^n e^{-x} dx$, show that $I_n = -\frac{1}{e} + nI_{n-1}$.
- As shown below, a circle has two chords AB and MN intersecting at F.
 Perpendiculars are drawn to these chords at A and N intersecting at K.
 KF produced meets MB at T.

Answer this question on the page provided

(i) Explain why AKNF is a cyclic quadrilateral.

1

(ii) By letting $\angle AKF = \theta$, prove that KT is perpendicular to MB.

3

[Use and hand in the attached diagram - see page 18]

Question 16 continues on page 15

Question 16 (continued)

Marks

d) Water flows into an aquarium at a rate proportional to the amount of water Q in the aquarium. At the same time, evaporation occurs at a rate proportional to the square of the quantity of water in the aquarium. Thus at any time t', it is known that

$$\frac{dQ}{dt} = aQ - bQ^2$$

where 'a' and 'b' are constants. Initially $Q = Q_0$.

- i) Using partial fractions, show that an expression for Q in terms of t $aQ_0 e^{at}$ is given by $Q = \frac{aQ_0 e^{at}}{\left(a bQ_0\right) + bQ_0 e^{at}}$.
- ii) Show that the quantity of water tends to a limit as time increases. 1

END OF EXAM

Multiple choice answer page. Fill in either A, B, C or D for questions 1-10.					
This page must be handed in with your answer booklets					
			1		
	1.			6.	
	2.			7.	
	3.			8.	
	4.			9.	
	5.			10.	
			1		

Candidate Name/Number: _____

Question 16c (additional diagram) Candidate Name/Number:					
Hand in this page inside the Question 16 booklet					

Multiple Choice Section:

5.B

Question 1.

$$iz = i\left(4 - 3i\right)$$

$$iz = 3 + 4i$$

$$\therefore \overline{iz} = 3 - 4i$$

Question 2.

The remainder is given by

$$P(i) = (-i)^{3} + (-i)^{2} + 5(-i) + 6$$
$$= i - 1 - 5i + 6$$
$$= 5 - 4i$$

Question 3.

$$\alpha + \beta + \gamma = \frac{3}{2}$$

$$\alpha \beta \gamma = -1 \rightarrow \gamma = -\frac{1}{\alpha \beta}$$

$$\therefore \alpha + \beta - \frac{1}{\alpha\beta} = \frac{3}{2}$$

 $-----\boxed{D}$

Question 4.

$$a = 2; b = 3; a^2 = b^2(1 - e^2); Foci(0, \pm be)$$

$$\therefore e^2 = \frac{5}{9} \rightarrow e = \frac{\sqrt{5}}{3}$$

$$\therefore$$
 Foci $(0, \pm \sqrt{5})$

----D

Question 5.

Question 6.

$$let u = 1 + tan x \rightarrow du = sec^2 x dx$$

when
$$x = \frac{\pi}{4}$$
, $u = 2$; $x = -\frac{\pi}{4}$, $u = 0$.

$$\therefore I = \int_0^2 \frac{1}{u^2} du \qquad ----- \underline{A}$$

Question 7.

 $e^x + e^y = 1$ and using implicit differentiation

$$e^x + e^y \frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = -\frac{e^x}{e^y} = -e^{x-y} \qquad -----\overline{A}$$

Question 8.

 $\angle XYB = 90^{\circ}$ and $\angle XZXC = 90^{\circ}$.

$$\therefore \frac{XZ}{XY} = \frac{XC}{XB} = \frac{3ZC}{2ZC} = \frac{3}{2}$$

$$\therefore 2XZ = 3XY \qquad -----\overline{C}$$

Question 9.

The radius of a typical slice is r = a - x

$$\therefore V_s = \pi r^2 \delta y$$

Volume =
$$\pi \int_0^{f(a)} (a-x)^2 dy$$

$$=\pi \int_0^{f(a)} \left[a - f^{-1}(y) \right]^2 dy$$

Question 10.

Question 11

a) i)
$$\text{Im}(u-z) = \text{Im}(2+3i) = 3$$

ii) $z\overline{u} = (1-i)(3-2i) = 1-5i$

b) It is rotated 90° in an anti-clockwise direction and |Q| = 2|P|.

c)
$$\int \frac{dx}{x^2 + 6x + 13} = \int \frac{dx}{\left(x^2 + 6x + 9\right) + 4}$$
$$= \int \frac{dx}{\left(x + 3\right)^2 + 2^2}$$
$$= \frac{1}{2} \tan^{-1} \left(\frac{x + 3}{2}\right) + c$$

d) i)
$$Z = 1 - \sqrt{3} i$$

$$\therefore \arg(Z) = -\frac{\pi}{3} \text{ and } |Z| = 2$$

$$\therefore Z = 2cis\left(-\frac{\pi}{3}\right)$$

d) ii)
$$Z^{10} = \left[2cis\left(-\frac{\pi}{3}\right)\right]^{10}$$
$$= 2^{10}cis\left(-\frac{10\pi}{3}\right)$$
$$= 1024\left[\cos\left(\frac{10\pi}{3}\right) - i\sin\left(\frac{10\pi}{3}\right)\right]$$
$$= 1024\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$$
$$= 512\left(-1 + \sqrt{3}i\right)$$

e)
$$2x^2 + 2xy + 3y^2 = 15$$

Using implicit differentiation $4x + 2x \cdot y' + 2y + 6y \cdot y' = 0$
 $2x + x \cdot y' + y + 3y \cdot y' = 0$
 $y'(x + 3y) = -2x - y$

$$\therefore \frac{dy}{dx} = \frac{-2x - y}{x + 3y}$$

vertical tangents will occur when x + 3y = 0

i.e. when
$$y = -\frac{x}{3}$$

$$\therefore 2x^2 + 2x\left(-\frac{x}{3}\right) + 3\left(-\frac{x}{3}\right)^2 = 15$$

$$\therefore x^2 = 9 \rightarrow x = \pm 3$$

f) i) D: all real *x*.

R:
$$0 < y < \frac{\pi}{2}$$
.

ii)

Question 12.

ii)

iii)

iv)

v)

b)
$$t = \tan \frac{\theta}{2} \rightarrow d\theta = \frac{2}{1+t^2} dt$$

When $\theta = 0$, t = 0; $\theta = \frac{\pi}{3}$, $t = \frac{1}{\sqrt{3}}$. Also $\sin \theta = \frac{2t}{1+t^2}$

$$I = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{1}{1 + \frac{2t}{1 + t^{2}}} \cdot \frac{2t}{1 + t^{2}} dt$$

$$=2\int_{0}^{\frac{1}{\sqrt{3}}} \frac{1}{1+2t+t^{2}} dt = 2\int_{0}^{\frac{1}{\sqrt{3}}} \frac{1}{(1+t)^{2}} dt$$

$$=-2\left[\frac{1}{1+t}\right]_0^{\frac{1}{\sqrt{3}}} = \frac{2}{1+\sqrt{3}}$$

c)
$$z_2 = \frac{1-i}{z_1} \rightarrow |z_2| = \left| \frac{1-i}{z_1} \right|$$

$$\therefore |z_2| = \frac{|1-i|}{|z_1|} = \frac{\sqrt{2}}{1} \text{ as } z_1 \text{ is on the unit circle.}$$

$$|z_2| = \sqrt{2}$$

and hence the locus of z_2 is a circle centre (0,0)and radius $\sqrt{2}$.

Question 13.

a)
$$P(x) = x^4 - 8x^3 + 18x^2 - 27$$
.
 $P'(x) = 4x^3 - 24x^2 + 36x$
 $P''(x) = 12x^2 - 48x + 36$

For a triple root P''(x) = 0

$$\therefore 12x^2 - 48x + 36 = 0$$

$$\therefore 12(x-3)(x-1)=0$$

$$\therefore x = 3 \text{ or } x = 1$$

also since
$$P(3) = 3^4 - 8 \times 3^3 + 18 \times 3^2 - 27 = 0$$

then x = 3 is the root of multiplicity three.

[Note
$$P(1) = 1 - 8 + 18 - 27 \neq 0$$
]

$$P(x) = (x-3)^3(x+1)$$

b) Let
$$I = \int \frac{1}{x^2} \sqrt{1 + \frac{4}{x}} \, dx$$

Let
$$u = \frac{1}{x} \rightarrow du = -\frac{1}{x^2} dx$$

$$I = -\int \sqrt{1 + 4u} \, du$$

$$= -\int (1 + 4u)^{\frac{1}{2}} \, du$$

$$= -\frac{(1 + 4u)^{\frac{3}{2}}}{4} \times \frac{2}{3}$$

$$= -\frac{(1 + 4u)^{\frac{3}{2}}}{6}$$

$$= -\frac{1}{6} \left(1 + \frac{4}{x} \right)^{\frac{3}{2}} + c$$

c) =
$$\frac{(1 + \cos \theta - i \sin \theta)}{(1 + \cos \theta + i \sin \theta)} \times \frac{(1 + \cos \theta - i \sin \theta)}{(1 + \cos \theta - i \sin \theta)}$$

$$= \frac{\left(1 + \cos \theta - i \sin \theta\right)^2}{\left(1 + \cos \theta\right)^2 - \left(i \sin \theta\right)^2}$$

$$=\frac{\left(1+\cos\theta\right)^2-2\left(1+\cos\theta\right)i\sin\theta+\left(i\sin\theta\right)^2}{\left(1+\cos\theta\right)^2-\left(i\sin\theta\right)^2}$$

$$= \frac{1 + 2\cos\theta + \cos^2\theta - 2(1 + \cos\theta)i\sin\theta - \sin^2\theta}{1 + 2\cos\theta + \cos^2\theta + \sin^2\theta}$$

$$=\frac{\left(\cos^{2}\theta+\sin^{2}\theta\right)+2\cos\theta+\cos^{2}\theta-2\left(1+\cos\theta\right)i\sin\theta-\sin^{2}\theta}{2+2\cos\theta}$$

$$=\frac{2\cos^2\theta+2\cos\theta-2(1+\cos\theta)i\sin\theta}{2(1+\cos\theta)}$$

$$=\frac{\cos\theta(1+\cos\theta)-(1+\cos\theta)i\sin\theta}{(1+\cos\theta)}$$

 $=\cos\theta - i\sin\theta$ (see end for alternate solution)

d) i) Let
$$x = -\alpha \rightarrow \alpha = -x$$

:. the required equation is given by

$$\therefore (-x)^3 - 4(-x)^2 - 12 = 0$$

$$\therefore -x^3 - 4x^2 - 12 = 0$$

hence $x^3 + 4x^2 + 12 = 0$

ii) The roots are of the form $\alpha + \beta + \gamma - \gamma$ = $(\alpha + \beta + \gamma) - \gamma$ = $4 - \gamma$ using sum of the roots.

Hence let $x = 4 - \gamma \rightarrow \gamma = 4 - x$

: the required equation is given by

$$\therefore (4-x)^3 - 4(4-x)^2 - 12 = 0$$

$$\therefore 64 - 48x + 12x^2 - x^3 - 64 + 32x - 4x^2 - 12 = 0$$

$$\therefore x^3 - 8x^2 + 16x + 12 = 0$$

e)
$$a^x = e^{2x-1}$$

$$\therefore \ln(a^x) = \ln(e^{2x-1})$$

$$\therefore x \ln a = 2x - 1$$

$$\therefore 1 = x(2 - \ln a)$$

$$\therefore x = \frac{1}{2 - \ln a}$$

Question 14.

a) i)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 by implicit differentiation

$$\therefore \frac{2x}{a^2} + \frac{2y}{b^2} \cdot \frac{dy}{dx} = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{b^2x}{a^2y}$$

$$\therefore$$
 at $P(a\cos\theta, b\sin\theta)$, $\frac{dy}{dx} = -\frac{b\cos\theta}{a\sin\theta}$

$$\therefore eq^n \text{ of } T \text{ at } P \colon y - b\sin\theta = -\frac{b\cos\theta}{a\sin\theta} (x - a\cos\theta)$$

$$ay \sin \theta - ab \sin^2 \theta = -bx \cos \theta + ab \cos^2 \theta$$

$$bx\cos\theta + ay\sin\theta = ab(\sin^2\theta + \cos^2\theta)$$

Hence
$$\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1 - - - - \boxed{1}$$

ii) Using $\boxed{1}$ and putting x = 0

$$\frac{y\sin\theta}{b} = 1 \quad \to \quad y = \frac{b}{\sin\theta}$$

iii) Using the equation of the normal [given] and putting x = 0

$$-\frac{by}{\sin\theta} = a^2 - b^2 \quad \Rightarrow \quad y = \frac{b^2 - a^2}{b}\sin\theta$$

$$\therefore R\left(0, \frac{b^2 - a^2}{b}\sin\theta\right)$$

iii) $\angle QPR = 90^{\circ} (\angle \text{ btwn tangent and normal})$

$$m_{QS} = \frac{0 - \frac{b}{\sin \theta}}{ae - 0} = \frac{-b}{ae \sin \theta}$$

$$m_{RS} = \frac{b^2 - a^2}{b} \sin \theta - 0 = \frac{b^2 - a^2}{b} \sin \theta - ae$$

Now
$$b^2 = a^2 (1 - e^2)$$
 \rightarrow $b^2 - a^2 = -a^2 e^2$

$$\therefore m_{RS} = \frac{-a^2 e^2 \sin \theta}{-abe} = \frac{ae \sin \theta}{b}$$

$$\therefore m_{QS} \times m_{RS} = \frac{-b}{ae\sin\theta} \times \frac{ae\sin\theta}{b}$$
$$= -1$$

$$\therefore \angle QSR = 90^{\circ} = \angle QPR$$

Hence QPSR are concyclic points $[\angle$'s in the same segment]

b)
$$f(x) = e^{-x} - 1 + x$$

$$f'(x) = -e^{-x} + 1$$
 and $f''(x) = e^{-x}$

As
$$f''(x) = e^{-x} > 0$$
 for all x

then f(x) is concave up

Also
$$f'(x) = 0 \rightarrow e^{-x} = 1$$

 $\therefore x = 0$ and hence there is a minimum turning pt at (0,0)

$$\therefore e^{-x} - 1 + x \ge 0 \quad \rightarrow \quad e^{-x} \ge 1 - x.$$

cii)
$$V = \left(\frac{4+\pi}{2}\right) \int_0^3 2x^2 \, dy$$

$$= \left(4+\pi\right) \int_0^3 \frac{16-y^2}{16} \, dy$$

$$= \left(\frac{4+\pi}{16}\right) \int_0^3 16-y^2 \, dy$$

$$= \left(\frac{4+\pi}{16}\right) \left[16y-\frac{y^3}{3}\right]_0^3$$

$$= \left(\frac{4+\pi}{16}\right) (48-9)$$

$$= \frac{39}{16} (4+\pi) \text{ m}^3$$

Question 15.

a)
$$\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} = \frac{3}{4}.$$

$$\therefore \frac{(s+c)(s^2-sc+c^2)}{s+c} = \frac{3}{4}$$

$$\therefore 1 - \sin\theta\cos\theta = \frac{3}{4}$$

$$\therefore \sin\theta\cos\theta = \frac{1}{4}$$

$$\therefore \sin 2\theta = \frac{1}{2}$$

$$\therefore 2\theta = n\pi + \left(-1\right)^n \left(\frac{\pi}{6}\right)$$

$$\therefore \theta = \frac{n\pi}{2} + \left(-1\right)^n \left(\frac{\pi}{12}\right)$$

b) i) When
$$n=2$$
 LHS = $(1+x)^2 = 1 + 2x + x^2$

$$RHS = 1 + 2x$$

Since
$$x^2 > 0$$
, $1 + 2x + x^2 > 1 + 2x$

Hence true for n = 2.

Assume true for n = k, $k \ge 2$

i.e.
$$(1+x)^k > 1 + kx$$

Prove true for n = k + 1

i.e.
$$(1+x)^{k+1} > 1 + (k+1)x$$

Now
$$(1+x)^{k+1} = (1+x)(1+x)^k$$

 $> (1+x)(1+kx) \text{ using } \boxed{1}$
and since $x > -1 \rightarrow 1+x > 0$
 $= 1+kx+x+kx^2$
 $> 1+(k+1)x, \text{ since } kx^2 > 0.$

Hence by induction is true for all $n \ge 2$.

ii) Let $x = -\frac{1}{2n}$. If $n \ge 2$, then this satisfies the condition of part (i), including x > -1.

$$\therefore (1+x)^n > 1 + nx$$

$$\therefore \left(1 - \frac{1}{2n}\right)^n > 1 - \frac{n}{2n}$$

$$= \frac{1}{2}$$

$$\therefore \left(1 - \frac{1}{2n}\right)^n > \frac{1}{2} \text{ for } n = 2, 3, 4, \dots$$

c) i.e. prove that $a^{3} + b^{3} - a^{2}b - ab^{2} \ge 0$

LHS =
$$(a + b)(a^2 - ab + b^2) - ab(a + b)$$

= $(a + b)(a^2 - 2ab + b^2)$
= $(a + b)(a - b)^2 \ge 0$, since $a > 0$ and $b > 0$.
 $\therefore a^3 + b^3 \ge a^2b + ab^2$

d) i) By letting p = q in x + pqy = 5(p + q) the equations of the tangents at P and Q are

$$x + p^2y = 10p$$
 and $x + q^2y = 10q$ respectively.

ii) By solving simultaneously

$$x + p^2y = 10p - - - \boxed{1}$$

 $x + q^2y = 10q - - - \boxed{2}$

$$1 - 2: (p^2 - q^2)y = 10(p - q)$$
$$(p - q)(p + q)y = 10(p - q)$$

$$\therefore y = \frac{10}{p+q} \qquad (p \neq q)$$

Substituting $y = \frac{10}{p+q}$ in $\boxed{1}$ gives

$$x + p^2 \left(\frac{10}{p+q}\right) = 10p$$

$$\therefore x = 10p - \frac{10p^2}{p+q}$$

$$= \frac{10p^2 + 10pq - 10p^2}{p+q}$$

$$= \frac{10pq}{p+q}$$

$$\therefore$$
 R has coordinates $\left(\frac{10pq}{p+q}, \frac{10}{p+q}\right)$.

iii) Since P passes through (15,0)

$$15 + 0 = 5(p+q) \rightarrow p+q = 3$$

$$\therefore$$
 R has coordinates $\left(\frac{10pq}{3}, \frac{10}{3}\right)$.

Hence the locus of R is $y = \frac{10}{3}$. [indep of p and q]

Since p > 0 and q > 0 then pq > 0 and so x > 0.

Also since the tangents intersect below the curve:

When
$$y = \frac{10}{3}$$
, $x = \frac{15}{2}$, then the locus of R is

$$y = \frac{10}{3}$$
, for $0 < x < \frac{15}{2}$.

Question 16.

a)
$$V_s = 2\pi xy \delta x$$

$$V = \lim_{\delta x \to 0} \sum_{x=0}^{1} 2\pi x y \delta x$$

$$= 2\pi \int_{0}^{1} x \left(\sqrt{x} - x^{2}\right) dx$$

$$= 2\pi \int_{0}^{1} x^{\frac{3}{2}} - x^{3} dx$$

$$= 2\pi \left[\frac{2}{5}x^{\frac{5}{2}} - \frac{1}{4}x^{4}\right]_{0}^{1}$$

$$= 2\pi \left(\left(\frac{2}{5} - \frac{1}{4}\right) - 0\right) = \frac{3\pi}{10} u^{3}$$

b) Let
$$u = x^n$$
, $v' = e^{-x}$
 $u' = n x^{n-1}$, $v = -e^{-x}$

$$I_n = -e^{-x} x^n \Big]_0^1 + \int_0^1 n x^{n-1} e^{-x} dx$$

$$= -e^{-1} - 0 + n I_{n-1}$$

$$= -\frac{1}{e} + n I_{n-1}$$

c) i)

Since $\angle KNF + \angle KAF = 180^{\circ}$

Opposite angles in cyclic quad supplementary hence *AKNF* is a cyclic quadrilateral.

ii) Join AN

Let $\angle AKF = \theta$

 $\therefore \angle AFK = 90 - \theta (\angle \operatorname{sum of } \Delta AKF)$

Also

 $\angle ANF = \theta \ (\angle \text{in same segment in cyclic quad } AKNF \)$

 $\therefore \angle BFT = 90 - \theta$ (vertically opp $\angle AFK$)

and $\angle FBM = \theta$ (\angle in same segment)

$$\therefore \angle FTB = 90^{\circ} (\angle \text{sum of } \Delta FTB)$$

 \therefore KT is perpendicular to MB.

d) i)
$$\frac{dQ}{dt} = aQ - bQ^2$$

$$\therefore \frac{dt}{dQ} = \frac{1}{Q(a - bQ)}$$

Using partial fractions let

$$\frac{1}{Q(a-bQ)} = \frac{r}{Q} + \frac{s}{a-bQ}$$

$$\therefore 1 = r(a - bQ) + sQ$$

$$=(s-br)Q+ar$$

$$s - br = 0$$
 and $ar = 1 \rightarrow r = \frac{1}{a}$ and $s = \frac{b}{a}$

$$\therefore t = \int \frac{1}{a} \cdot \frac{1}{Q} + \frac{b}{a} \cdot \frac{1}{a - bQ} dQ$$

$$t = \frac{1}{a} \ln Q - \frac{1}{a} \ln \left(a - bQ \right) + c$$

When
$$t = 0$$
, $Q = Q_0 \implies c = -\frac{1}{a} \ln \left(\frac{Q_0}{a - bQ_0} \right)$

$$\therefore t = \frac{1}{a} \ln \left(\frac{Q}{a - bQ} \right) - \frac{1}{a} \ln \left(\frac{Q_0}{a - bQ_0} \right)$$

$$at = \ln\left(\frac{Q}{a - bQ} \times \frac{a - bQ_0}{Q_0}\right)$$

$$\therefore e^{at} = \frac{Q}{a - bQ} \times \frac{a - bQ_0}{Q_0}$$

$$\therefore \frac{Q_0 e^{at}}{a - bQ_0} = \frac{Q}{a - bQ}$$

$$Q = \frac{aQ_0 e^{at}}{(a - bQ_0) + bQ_0 e^{at}}$$
 on rearranging

ii) Hence
$$Q = \frac{aQ_0}{bQ_0 + (a - bQ_0)e^{-at}}$$

As
$$t \to \infty$$
, $e^{-at} \to 0$

Hence $Q \to \frac{a}{b}$ which is constant.

Q13c alternate solution:

Let $z = \cos \theta + i \sin \theta$ and hence $\frac{1}{z} = \cos \theta - i \sin \theta$

$$\therefore \frac{1+\frac{1}{z}}{1+z} = \frac{z+1}{z}$$

$$= \frac{1}{z} = \cos \theta - i \sin \theta$$